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Abstract

Equivalent surface currents obtained from the

solution of a surface integral equation model for a
dielectric resonator are utilized to evaluate the

electric and magnetic fields inside and outside of
the isolated dielectric resonator. The resulting
field plots permit a positive mode identification,

and they are useful in designing devices to enhance
coupling of or to suppress various modes.

Introduction

When the resonances in dielectric resonators

are observed experimentally, it takes considerable
skill to determine which frequency corresponds to a
particular resonant mode. Similar difficulty in

identifying the modes of dielectric resonators is
encountered in numerical determination of resonant

frequencies. In the latter case, for example, the

complex frequencies for rotationally symmetric bod-
ies may be obtained by finding zeroes of the matrix

equation determinant with a fixed value of m (azi-
muthal modal number). When a natural frequency is

found, there is no immediate indication of the

value of the other two modal numbers n and L which

correspond to this particular natural frequency.

In this paper we address the problem of identifying

the individual modes of an isolated dielectric

resonator by calculating the detailed field distri-
bution for each of the encountered resonances.

Computational Procedure

The computational procedure for the fields is
based on the surface integral equation for rota-

tional dielectric bodies, as described in [1]. The

matrix equation developed via the method of moments

is partitioned in the following way:
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Subscripts $ and t denote vector components in the

azimuthal direction and in the direction along the

generating curve for the body of revolution, re-
spectively. 1 and K are the unknown “total” elec-

tric and magnetic surface currents, and J and M are

the electric and magnetic surface current densi-

ties. Each of the partitions of the unknown column

vector, say lit>, may consist of many elements.

In order to improve the numerical stability of

the matrix for subsequent calculation of the natu-

ral frequencies and the modal fields, the variables

aPPea~in8 in (1) should be normalized so that all

the elements within the column vector are expressed
in the same physical units. ‘his should be assured
also for the column vector on the right-hand side

of the equation, although for the natural respons,e,
the incident fields are non-existent. Such a nor-

malization requires multiplications and divisions

of certain blocks of rows and certain blocks of

columns with various factors such as the intrinsic

impedance of the dielectric material, the intrinsic
impedance of free space, or the circumference of

the resonator.

The consequence of this type of normalization

has been a noticeable improvement in the condition-
ing of the matrix under consideration. As an ex-

ample, the condition number based on the infinite

norm [2] has been computed for the matrix appearing
in (1) before and after the normalization indicated

above. For the mode HEM126 with 27 points on the

body (resulting in 102 x 102 matrix), the matrix
condition number was reduced by a factor 106 .

The natural frequency of the particular mc,de

is found by searching for a complex frequency value

which causes the determinant of the matrix de-
veloped via the method of moments to vanish. Omce

the natural frequency is determined, the modal

equivalent surface currents can be computed within
a multiplicative constant using a Gaussian elimi-

nation procedure in which the value of one unknciwn

current coefficient is arbitrarily chosen. The ze-

sulting electric and magnetic equivalent currents

on the surface of the dielectric body can then be

utilized to compute the electric and magnetic

fields inside and surrounding the resonator. If

one recognizes that the moment matrix developed

from the surface integral equation actually repre-

sents a sum of the tangential interior and exterior
scattered field at the body surface due to unit
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sources, however, these near fields can actually be

computed with relatively little new programming.
To accomplish this, we first introduce an artifical
surface on which it is desired to compute the tan-

gential fields, then compute fields on the arti-

ficial surface due to unit sources on the body
surface using a slightly modified version of the
moment matrix routine, and finally multiply by the

vector of computed modal currents to obtain the

actual tangential fields on the artificial surface.
The major modification to the moment matrix routine
involves the retention of only those terms which

depend on the Green’s function of the medium in

which the field is to be evaluated. The disad-

vantage of the procedure is that two different

artifical surfaces are required to find both the p

and z components of the field, but it provides a

simple and expedient means for computing the field
distributions without development of a relatively

complicated new program.

Field Distributions

Field distributions obtained by this procedure
have been compared the the theoretical distribution

for a dielectric rod waveguide, for which the SO-

lution is available in terms of Bessel functions

[31. As seen in Fig. 1, the agreement is quite

good inside the resonator, but outside, one ob-
serves that the actual field of the isolated reso-

nator decays more slowly than the field computed
for a resonant section of the dielectric rod wave-

guide terminated by two parallel magnetic walls.

The computed vector field F (electric or mag-

netic field) for a particular mode is an expo-
nentially decaying oscillation. Even if the de-

caying nature of the field is ignored, it is diffi–
cult to graphically represent the spatial distri-
bution of the magnitude and the phase of F. There-

fore, we display the instantaneous values of the

vec tor

at several

j~mnLt
Re(F e )

instants of time, like

In the above we use umnj. to represent only the im-
aginary part of the complex natural frequency of
the mode (m,n,i). A computer-generated graphical
display is then used to show the field orientation

at equidistant points as well as to provide some

relative amplitude information. When the trans-

verse field is more than 20dB below the m=’imum
value of the field, the points are left blank.

Fig. 2 shows the electric field of the mode

mold in the equatorial plane, at ~mngt=o. we

quarter of a period later, the magnetic field h
the meridian plane takes the form shown in Fig. 3.

The remaining figures show the field distri-

bution of the hybrid mode HEM126. Fig. 4 shows the

electric field in the equatorial plane, and Fig. 5

shows the electric field in the meridian plane.
Observe the saddle-shaped regions close to each

face of the resonator where the electric field is

weak. These are the regions to which the magnetic

field lines of Fig. 6 are perpendicular (note the
rotation in azimuth).

The field distributions such as those dis-
played here are useful in designing the coupling

mechanisms for desired modes and in constructing

devices for the suppression of undesired modes.
Another application of the presented numerical pro-
cedure is foreseen in situations when coupling to

nearby objects must be computed more accurately
than is possible with a simple point-dipole field

model of the dielectric resonator.
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1. Electric field VS. radial distance. Sol id
1 ine: TE016 dielectric resonator. Broken
line : TEoll dielectric rod waveguide be-
tween parallel magnetic walls. The two
fields are normalized to the same maximum

value.
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Fig. 2. TEOl& mode, E-field in the equatorial

plane, Ut = O.
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Fig. 3. TE016 mode, H-field in the meridian plane,

tit = T12.
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Fig. 4. HEN128 mode, E–field in ‘he equatorial

plane, ut = 0.

Fig. 5. HEM126 mode, E-field in the meridian

plane, $ = O, ut = 0.
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Fig. 6. HEM126 mode , H-field in the meridian

plane. + = =12. L)t = 7/2.
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